Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Tags
- 오류
- Linux
- paramiko
- error
- C
- Numpy
- YOLO
- 프로그래머스
- mysql
- ubuntu
- Selenium
- pip
- Docker
- 핑거스타일
- LIST
- SSH
- JSON
- OpenCV
- 기타 연주
- label
- pytorch
- Visual Studio
- 컨테이너
- C++
- VS Code
- Python
- windows forms
- 채보
- pandas
- C#
Archives
- Today
- Total
기계는 거짓말하지 않는다
YOLO label to Labelme JSON label 변환 본문
YOLO txt 형식 label 데이터를 라벨링 툴인 Labelme에서 읽을 수 있는 JSON 형식으로 바꿔 준다.
이미지와 txt 라벨이 같은 디렉터리에 있을 경우 그대로 사용 가능하다.
다른 디렉터리일 경우 코드 수정이 필요하다.
import os
import glob
import json
import time
import datetime
import shutil
import cv2
def calculate_points(image_width: int, image_height: int, x_center_scaling: float, y_center_scaling:float,
w_scaling:float, h_scaling:float):
w = w_scaling * image_width
h = h_scaling * image_height
xmin = (x_center_scaling * image_width) - int(w / 2)
ymin = (y_center_scaling * image_height) - int(h / 2)
xmax = (x_center_scaling * image_width) + int(w / 2)
ymax = (y_center_scaling * image_height) + int(h / 2)
return xmin, ymin, xmax, ymax
labelme_version = "5.0.1"
flages = {}
class_names = ["person", "car"]
# 이미지, 라벨이 다른 디렉터리일 경우 코드 수정 필요
# 서로 다른 디렉터리 pair 확인 시 파일이름으로 정렬 필요
origin_image_and_yolo_txt_label_path = "./pair_data_img_label/"
dest_json_label_path = "./json_label/"
origin_image_and_yolo_txt_label_path_list = glob.glob(os.path.join(origin_image_and_yolo_txt_label_path, "*"))
pair_count = 0
pair_len = int(len(origin_image_and_yolo_txt_label_path_list) / 2)
if len(origin_image_and_yolo_txt_label_path_list) % 2 != 0:
print("No pair image and label data")
exit()
start_time = time.time()
for i in range(1, len(origin_image_and_yolo_txt_label_path_list), 2):
file_name_1 = os.path.splitext(origin_image_and_yolo_txt_label_path_list[i - 1])[0]
file_name_1 = os.path.split(file_name_1)[1]
file_name_1_ext = os.path.splitext(origin_image_and_yolo_txt_label_path_list[i - 1])[1]
file_name_2 = os.path.splitext(origin_image_and_yolo_txt_label_path_list[i])[0]
file_name_2 = os.path.split(file_name_2)[1]
file_name_2_ext = os.path.splitext(origin_image_and_yolo_txt_label_path_list[i])[1]
if file_name_1 == file_name_2:
pair_count += 1
else:
print(f"No pair image and label: ({origin_image_and_yolo_txt_label_path_list[i - 1]}) != ({origin_image_and_yolo_txt_label_path_list[i]})")
break
if pair_count % 100 == 0:
print(f"{pair_count} / {pair_len}")
text_label_path = None
text_label_file_name = None
image_file_path = None
if file_name_1_ext == ".txt":
text_label_path = origin_image_and_yolo_txt_label_path_list[i - 1]
text_label_file_name = file_name_1
image_file_path = origin_image_and_yolo_txt_label_path_list[i]
else:
text_label_path = origin_image_and_yolo_txt_label_path_list[i]
text_label_file_name = file_name_2
image_file_path = origin_image_and_yolo_txt_label_path_list[i - 1]
with open (text_label_path, "r") as f:
lines = f.readlines()
if len(lines) == 0 or lines[0].replace("\n", "") == "":
print("Empty label data: ", text_label_path)
with open(dest_json_label_path + text_label_file_name + ".json", 'w') as json_file:
json_data = {}
json_data["version"] = labelme_version
json_data["flags"] = flages
json_data["shapes"] = []
image = cv2.imread(image_file_path)
h, w, c = image.shape
for line in lines:
object_data = line.replace("\n", "").split(" ")
shape = {}
shape["label"] = class_names[int(object_data[0])]
xmin, ymin, xmax, ymax = calculate_points(w, h, float(object_data[1]), float(object_data[2]), float(object_data[3]), float(object_data[4]))
shape["points"] = []
shape["points"].append([xmin, ymin])
shape["points"].append([xmax, ymax])
shape["group_id"] = None
shape["shape_type"] = "rectangle"
shape["flages"] = {}
json_data["shapes"].append(shape)
json_data["imagePath"] = os.path.split(image_file_path)[1]
json_data["imageData"] = None
json_data["imageHeight"] = h
json_data["imageWidth"] = w
json.dump(json_data, json_file, indent=2)
shutil.copyfile(image_file_path, dest_json_label_path + os.path.split(image_file_path)[1])
print(f"Total Data: {len(origin_image_and_yolo_txt_label_path_list)} Total Pair: {pair_count}")
print(f"Total Time: {datetime.timedelta(seconds=int(time.time() - start_time))}")
'AI' 카테고리의 다른 글
YOLO label 텍스트 classid 제외 (1) | 2022.10.23 |
---|---|
YOLO label 텍스트 classid 변경 (0) | 2022.10.14 |
YOLOv3 deepSORT KeyError: "The name 'net/images:0' (0) | 2022.07.01 |
min, max 좌표 YOLO label format 변환 (0) | 2022.05.27 |
활성화 함수(Activation Function) (0) | 2021.10.20 |
Comments